Telescoping method, derivative operators and harmonic number identities
نویسندگان
چکیده
منابع مشابه
Riordan arrays and harmonic number identities
Let the numbers P (r, n, k) be defined by P (r, n, k) := Pr ( H n −H (1) k , · · · , H (r) n −H (r) k ) , where Pr(x1, · · · , xr) = (−1)Yr(−0!x1,−1!x2, · · · ,−(r− 1)!xr) and Yr are the exponential complete Bell polynomials. By observing that the numbers P (r, n, k) generate two Riordan arrays, we establish several general summation formulas, from which series of harmonic number identities are...
متن کاملNew Harmonic Number Identities with Applications
We determine the explicit formulas for the sum of products of homogeneous multiple harmonic sums ∑n k=1 ∏r j=1Hk({1} ) when ∑r j=1 λj ≤ 5. We apply these identities to the study of two congruences modulo a power of a prime.
متن کاملHarmonic Number Identities Via Euler’s Transform
We evaluate several binomial transforms by using Euler's transform for power series. In this way we obtain various binomial identities involving power sums with harmonic numbers.
متن کاملNew Classes of Harmonic Number Identities
We develop some new classes of harmonic number identities, and give an integral proof of an identity given by Sun and Zhao.
متن کاملGeneralized Harmonic Number Identities and a Related Matrix Representation
In this paper, we obtain important combinatorial identities of generalized harmonic numbers using symmetric polynomials. We also obtain the matrix representation for the generalized harmonic numbers whose inverse matrix can be computed recursively.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Transforms and Special Functions
سال: 2013
ISSN: 1065-2469,1476-8291
DOI: 10.1080/10652469.2013.838757